12職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點 → 2023年10月18日成考高起點每日一練《數(shù)學(xué)(文史)》

2023年10月18日成考高起點每日一練《數(shù)學(xué)(文史)》

2023/10/18 作者:匿名 來源:本站整理

2023年成考高起點每日一練《數(shù)學(xué)(文史)》10月18日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅持練習(xí),逐步提升考試成績。

單選題

1、已知向量i,j為互相垂直的單位向量,向量a=2i+mj,若|a|=2,則m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由題可知a=(2,m),因此,故m=0.

2、若函數(shù)y=f(x)在[-1,1]上是單調(diào)函數(shù),則使得y=f(sinx)必為單調(diào)函數(shù)的區(qū)間是() ?

  • A:R
  • B:[-1,1]
  • C:
  • D:[-sin1 ,sin1]

答 案:C

解 析:y=f(x)在[-1,1]上是單調(diào)函數(shù),所以y=f(x)的單調(diào)區(qū)間為[-1,1] ?

3、已知直線l:3x一2y-5=0,圓C:,則C上到l的距離為1的點共有()

  • A:1個
  • B:2個
  • C:3個
  • D:4個

答 案:D

解 析:由題可知圓的圓心為(1.-1),半徑為2,圓心到直線的距離為,即直線過圓心,因此圓C上到直線的距離為1的點共有4個.

4、函數(shù)與y的圖像之間的關(guān)系是 ?

  • A:關(guān)于原點對稱
  • B:關(guān)于x軸對稱
  • C:關(guān)于直線 y=1對稱
  • D:關(guān)于y軸對稱

答 案:D

解 析:關(guān)于y軸對稱,

主觀題

1、如圖:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小數(shù)表示,保留一位小數(shù)) ?

答 案:如圖 ?

2、每畝地種果樹20棵時,每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?

答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當(dāng)x=5時,y有最大值,所以每畝地最多種25棵

3、設(shè)橢圓的中心是坐標(biāo)原點,長軸在x軸上,離心率已知點P到圓上的點的最遠(yuǎn)距離是求橢圓的方程 ?

答 案:由題意,設(shè)橢圓方程為 設(shè)P點到橢圓上任一點的距離為 d, 則在y=-b時,最大,即d也最大。 ?

4、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面積

答 案:

填空題

1、函數(shù)f(x)=在區(qū)間[-3,3]上的最大值為() ?

答 案:4

解 析:這題考的是高次函數(shù)的最值問題,可用導(dǎo)數(shù)來求函數(shù)在區(qū)間[-3,3]上的最值。 列出表格 由上表可知函數(shù)在[-3,3]上,在x=1點處有最大值為4. ?

2、不等式的解集是() ?

答 案:

解 析:

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?