12職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點(diǎn) → 2023年10月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023年10月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023/10/15 作者:匿名 來源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》10月15日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、設(shè)成等比數(shù)列,則x等于 ?

  • A:0或-2
  • B:1或-1
  • C:0或-2
  • D:-2

答 案:C

解 析:由已知條件的得

2、已知向量a=(3,4),b=(0,-2),則cos=() ?

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:因?yàn)閍=(3,4),b=(0,-2), ?

3、從15名學(xué)生中選出兩人擔(dān)任正、副班長(zhǎng),不同的選舉結(jié)果共有() ?

  • A:30種
  • B:90種
  • C:210種
  • D:225種

答 案:C

解 析:由已知條件可知本題屬于排列問題,

4、直線2x-y+7=0,與圓的位置關(guān)系是() ?

  • A:相離
  • B:相交但不過圓心
  • C:相切
  • D:相交且過圓心

答 案:C

解 析:易知圓心坐標(biāo)(1,-1),圓心到直線2x-y+7=0的距離d ∵圓的半徑 ∴d=r,∴直線與圓相切 ?

主觀題

1、每畝地種果樹20棵時(shí),每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?

答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當(dāng)x=5時(shí),y有最大值,所以每畝地最多種25棵

2、如圖:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小數(shù)表示,保留一位小數(shù)) ?

答 案:如圖 ?

3、設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率已知點(diǎn)P到圓上的點(diǎn)的最遠(yuǎn)距離是求橢圓的方程 ?

答 案:由題意,設(shè)橢圓方程為 設(shè)P點(diǎn)到橢圓上任一點(diǎn)的距離為 d, 則在y=-b時(shí),最大,即d也最大。 ?

4、已知直線l的斜率為1,l過拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.

答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由設(shè)A(x1,y1).B(x2,y2),則因此

填空題

1、任選一個(gè)不大于20的正整數(shù),它恰好是3的整數(shù)倍的概率是() ?

答 案:

解 析:設(shè)n為不大于20的正整數(shù)的個(gè)數(shù),則n=20,m為在這20個(gè)數(shù)中3的倍數(shù):3,6、9、12、15、18的個(gè)數(shù)。 ∴m=6,∴所求概率= ?

2、函數(shù)的圖像與坐軸的交點(diǎn)共有()個(gè) ?

答 案:2

解 析:當(dāng)x=0,故函數(shù)與y軸交于(0,-1)點(diǎn);令y=0,則有故函數(shù)與工軸交于(1,0)點(diǎn),因此函數(shù)與坐標(biāo)軸的交點(diǎn)共有2個(gè)

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過審核才能顯示

精彩評(píng)論

最新評(píng)論
?