12職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類成考高起點(diǎn) → 2023年10月10日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年10月10日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/10/10 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月10日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、已知集合M =(2,3,5,a),N =(1,3,4,b),若M∩N=(1,2,3),則a,b的值為 ?

  • A:a=2,b=1
  • B:a=1,b=1
  • C:a=1,b= 2
  • D:a=1,b=5

答 案:C

解 析:M∩N={2,3,5,a} ∩{1,3,4,6} ={1,2,3} 又因?yàn)镸中無(wú)“1”元素,而有“a”元素,只有a=1 而N中無(wú)“2”元素,而有“b元素”,只有b=2 ?

2、過(guò)點(diǎn)P(2,3)且在兩軸上截距相等的直線方程為() ?

  • A:
  • B:
  • C:x+y=5
  • D:

答 案:B

解 析:選項(xiàng)A中,在x、y 軸上截距為 5.但答案不完整 所以選項(xiàng)B中有兩個(gè)方程,在x軸上橫截距與y軸上的縱截距都為0,也是相等的 選項(xiàng)C,雖然過(guò)點(diǎn)(2,3),實(shí)質(zhì)上與選項(xiàng)A相同.選項(xiàng) D,轉(zhuǎn)化為:答案不完整 ?

3、的展開(kāi)式中,x2的系數(shù)為()

  • A:20
  • B:10
  • C:5
  • D:1

答 案:C

解 析:二項(xiàng)展開(kāi)式的第二項(xiàng)為,故展開(kāi)式中的x2的系數(shù)為5.

4、給出下列兩個(gè)命題:①如果一條直線與一個(gè)平面垂直,則該直線與該平面內(nèi)的任意一條直線垂直②以二面角的棱上任意一點(diǎn)為端點(diǎn),在二面角的兩個(gè)面內(nèi)分別作射線,則這兩條射線所成的角為該二面角的平面角.則()

  • A:①②都為真命題
  • B:①為真命題,②為假命題
  • C:①為假命題,②為真命題
  • D:①②都為假命題

答 案:B

解 析:一條直線與平面垂直,則直線與平面內(nèi)的任意一條直線垂直,故①為真命題;二面角的兩條射線必須垂直于二面角的棱,故②為假命題,因此選B選項(xiàng).

主觀題

1、已知數(shù)列的前n項(xiàng)和 求證:是等差數(shù)列,并求公差和首項(xiàng)。 ?

答 案: ?

2、已知直線l的斜率為1,l過(guò)拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.

答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由,得設(shè)A(x1,y1),B(x2,y2),則因此

3、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求這個(gè)數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列第六項(xiàng)到第十項(xiàng)的和

答 案: ?

4、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬

答 案:如圖, ∵∠C=180°-30°-75°=75° ∴△ABC為等腰三角形,則AC=AB=120m 過(guò)C做CD⊥AB,則由Rt△ACD可求得CD==60m, 即河寬為60m ?

填空題

1、函數(shù)的定義域是()

答 案:

解 析:所以函數(shù)的定義域是

2、lg(tan43°tan45°tan47°)=() ?

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?