2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》10月6日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。
單選題
1、已知雙曲線上一點(diǎn)到兩焦點(diǎn)(-5,0),(5,0)距離之差的絕對值等于6,則雙曲線方程為() ?
- A:
- B:
- C:
- D:
答 案:A
解 析:由已知條件知雙曲線焦點(diǎn)在x軸上屬于第一類標(biāo)準(zhǔn)式,又知c=5,2a=6, ∴a=3,∴所求雙曲線的方程為 ?
2、設(shè)集合M={x||x-2||<2},N={0,1,2,3,4},則M∩N=()
- A:{2}
- B:{0,1,2}
- C:{1,2,3}
- D:{0,1,2,3,4}
答 案:C
解 析:解得M={x||x-2||<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.
3、如果點(diǎn)(2,一4)在一個(gè)反比例函數(shù)的圖像上,那么下列四個(gè)點(diǎn)中也在該圖像上的是()
- A:(一2,4)
- B:(一4,一2)
- C:(一2,一4)
- D:(2,4)
答 案:A
解 析:設(shè)反比例函數(shù)為,點(diǎn)(2,-4)在反比例函數(shù)的圖像上,因此有,解得k=-8,故反比例函數(shù),當(dāng)x=-2時(shí),y=4,故選A在該圖像上.
4、下列函數(shù)中,為奇函數(shù)的是()
- A:y=cos2x
- B:y=sinx
- C:y=2-x
- D:y=x+1
答 案:B
解 析:當(dāng)f(-x)=-f(x)時(shí),函數(shù)f(x)是奇函數(shù),四個(gè)選項(xiàng)中只有選項(xiàng)B符合,故選B選項(xiàng).
主觀題
1、設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長軸在x軸上,離心率已知點(diǎn)P到圓上的點(diǎn)的最遠(yuǎn)距離是求橢圓的方程 ?
答 案:由題意,設(shè)橢圓方程為 由 設(shè)P點(diǎn)到橢圓上任一點(diǎn)的距離為 d, 則在y=-b時(shí),最大,即d也最大。 ?
2、設(shè)函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.
答 案:(I)因?yàn)?img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×22-4=8.(II)因?yàn)閤<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為
3、每畝地種果樹20棵時(shí),每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?
答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當(dāng)x=5時(shí),y有最大值,所以每畝地最多種25棵
4、如圖:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小數(shù)表示,保留一位小數(shù)) ?
答 案:如圖 ?
填空題
1、從某班的一次數(shù)學(xué)測試卷中任意抽出10份,其得分情況如下:81,98,43,75,60,55,78,84,90,70,則這次測驗(yàn)成績的樣本方差是() ?
答 案:252.84
解 析: =252.84 ?
2、函數(shù)y=的定義域是()
答 案:[1,+∞)
解 析:要是函數(shù)y=有意義,需使 所以函數(shù)的定義域?yàn)閧x|x≥1}=[1,+∞) ?