2023年成考高起點每日一練《數(shù)學(理)》10月2日專為備考2023年數(shù)學(理)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。
單選題
1、在的展開式中,的系數(shù)是
- A:448
- B:1140
- C:-1140
- D:-448
答 案:D
解 析:直接套用二項式展開公式: 注:展開式中第r+1項的二項式系數(shù)與第r+1項的系數(shù)不同,此題不能只寫出就為的系數(shù) ?
2、直線3x-4y-9=0與圓(θ為參數(shù))的位置關系是
- A:相交但直線不過圓心
- B:相交但直線通過圓心
- C:相切
- D:相離
答 案:A
解 析:方法一: 圓心O(0,0),r=2,則圓心O到直線的距離為
0
3、過點(-2,2)與直線x+3y-5=0平行的直線是()
- A:x+3y-4=0
- B:3x+y+4=0
- C:x+3y+8=0
- D:3x-y+8=0
答 案:A
解 析:所求直線與x+3y-5=0平行,可設所求直線為x+3y+c=0,將點(一2,2)帶入直線方程,故-2+3×2+c=0,解得c=-4,因此所求直線為線為x+3y-4=0.
4、函數(shù)的反函數(shù)是()
- A:
- B:
- C:
- D:
答 案:A
解 析:,由于x≤0,故把x與y互換,得所求反函數(shù)為
主觀題
1、已知直線l的斜率為1,l過拋物線C:的焦點,且與C交于A,B兩點.(I)求l與C的準線的交點坐標;
(II)求|AB|.
答 案:(I)C的焦點為,準線為由題意得l的方程為因此l與C的準線的交點坐標為(II)由,得設A(x1,y1),B(x2,y2),則因此
2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量和關于基底{a,b,c}的分解式; (Ⅱ)求證: (Ⅲ)求證: ?
答 案:(Ⅰ)由題意知(如圖所示) ?
3、已知數(shù)列的前n項和 求證:是等差數(shù)列,并求公差和首項。 ?
答 案: ?
4、設函數(shù)f(x)= (Ⅰ)求f(x)的單調區(qū)間; (Ⅱ)求 f(x)的極值
答 案:(Ⅰ)函數(shù)的定義域為 (Ⅱ) ?
填空題
1、的展開式是()
答 案:
解 析:
2、lg(tan43°tan45°tan47°)=() ?
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0