12職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類成考高起點(diǎn) → 2023年08月04日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年08月04日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/08/04 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》8月4日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,則△ABC是()

  • A:以A為直角的三角形
  • B:b=c的等腰三角形
  • C:等邊三角形
  • D:鈍角三角形

答 案:B

解 析:判斷三角形的形狀,條件是用一個(gè)對(duì)數(shù)等式給出先將對(duì)數(shù)式利用對(duì)數(shù)的運(yùn)算法則整理。 ∵lgsinA-lgsinB-lgcos=lg2,由對(duì)數(shù)運(yùn)算法則可得,左 兩個(gè)對(duì)數(shù)底數(shù)相等則真數(shù)相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故為等腰三角形

2、函數(shù)的反函數(shù)是()

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:,由于x≤0,故把x與y互換,得所求反函數(shù)為

3、設(shè)集合A={0,1},B={0,1,2},則A∩B=() ?

  • A:{1,2}
  • B:{0,2}
  • C:{0,1}
  • D:{0,1,2}

答 案:C

解 析:

4、設(shè)0

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析: ?

主觀題

1、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式 (Ⅱ)求證: (Ⅲ)求證: ?

答 案:(Ⅰ)由題意知(如圖所示) (Ⅱ) (Ⅲ) 由已知,a,c是正四棱柱的棱,a,b,c兩兩垂直 ?

2、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量關(guān)于基底{a,b,c}的分解式; (Ⅱ)求證: (Ⅲ)求證: ?

答 案:(Ⅰ)由題意知(如圖所示) ?

3、某工廠每月生產(chǎn)x臺(tái)游戲機(jī)的收入為R(x)=+130x-206(百元),成本函數(shù)為C(x)=50x+100(百元),當(dāng)每月生產(chǎn)多少臺(tái)時(shí),獲利潤(rùn)最大?最大利潤(rùn)為多少? ?

答 案:利潤(rùn) =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函數(shù)當(dāng)a<0時(shí)有最大值 是開口向下的拋物線,有最大值 法二:用導(dǎo)數(shù)來(lái)求解 因?yàn)閤=90是函數(shù)在定義域內(nèi)唯一駐點(diǎn) 所以x=90是函數(shù)的極大值點(diǎn),也是函數(shù)的最大值點(diǎn),其最大值為L(zhǎng)(90)=3294 ?

4、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.

答 案:由已知得解得

填空題

1、若平面向量a=(x,1),b=(1,-2),且a//b,則x=() ?

答 案:

解 析:由于a//b,故

2、長(zhǎng)方體的長(zhǎng)、寬、高分別為2,3,6,則該長(zhǎng)方體的對(duì)角線長(zhǎng)為()

答 案:7

解 析:由題可知長(zhǎng)方體的底面的對(duì)角線長(zhǎng)為,則在由高、底面對(duì)角線、長(zhǎng)方體的對(duì)角線組成的三角形中,長(zhǎng)方體的對(duì)角線長(zhǎng)為

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?